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Characteristic Seismic Failures of Buildings

Earthquakes can cause considerable fatalities, injuries and 
financial loss. The forces of nature cannot be blamed, as the 
problem lies with the structures in seismic regions that may not 
have been designed or constructed to a sufficient degree to 
resist earthquake actions or they may have design flaws. This 
Structural Engineering Document (SED) concerns reinforced 
concrete and masonry buildings together with geotechnical 
aspects and presents in a concise and practical way the state 
of the art of current understanding of building failures due to 
earthquakes. It classifies the different types of seismic failure, 
explains the reasons for each failure, describes good practices 
to avoid such failures and also describes seismic retrofitting/
upgrading procedures for pre-earthquake strengthening and 
post-earthquake repair and/or strengthening techniques for 
deficient buildings. Carefully selected photographs and dia-
grams illustrate the different failure types. This document could 
be considered as quite unique, as this is the first time such 
material concerning characteristic seismic failures of build-
ings has been presented together in one single document. It 
is intended to be a valuable educational reference textbook 
aimed at all levels of experience of engineers. It provides 
background information, ideas, guidance and reassurance to 
engineers in earthquake regions faced with the task of building 
a safer future for the public and to protect lives.
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Preface

Earthquakes are not going to stop happening. In terms of worldwide fatalities and financial loss,
earthquakes can be considered one of the most destructive natural hazards known to humanity.
For years, seismic code provisions only referred to new structures. However, in the last 20 years,
a new generation of codes for the assessment, repair, and strengthening of existing structures has
started to appear. This reflects the need to preserve and possibly upgrade the building stock for
social reasons related to life safety of the people, as well as accounting for cost effectiveness,
environmental issues, or aesthetics. A lot of work has been performed relating to code develop-
ment along with an impressive progress in theoretical and experimental research on earthquake
engineering. Nevertheless, a comprehensive knowledge on the subject cannot be achieved with-
out the observation of what happens in real conditions when an earthquake strikes. Although
there has been any number of earthquake reconnaissance reports produced, there are no complete
publications that (a) categorize the structural deficiencies that earthquakes exploit or (b) explain
good practice in structural design and retrofitting. Thus, the primary object of this SED publica-
tion is education. The document attempts to present in a concise and practical way the state of the
art of our current understanding of building failures due to earthquakes.

Aristotle said that knowledge starts from observation. From a structural engineering point of
view, any seismic event is a real test of thousands of buildings. Lessons learnt from the aftermath
of earthquakes and specifically from observed failures are the best way to improve our knowledge
by filling the gap between research and real practice.

Therefore, from the very beginning when IABSEWorking Group 7 was first established in 2009,
a study of characteristic seismic failures was recognized as one of the main topics of the group.
From 2009 to 2013, data from seismic failures were collected and analysed by a team of members
and guests comprising, in alphabetical order: Anton Antonov, Prof. Stephanos E. Dritsos, Chris-
tos Giarlelis, Jack López Jara, Prof. Dharam V. Mallick (sadly deceased), Serge Montens, Dr. V.
J. “Jon” Moseley, and Dr. Kyriakos Stathopoulos. Initial coordination was performed by Group
Chairman Prof. Stephanos E. Dritsos, and a first internal draft report “Characteristic Seismic Fail-
ures” was welcomed at the 2011 Technical Committee meeting in London. A final draft coordi-
nated by Jack López Jara was uploaded to the Working Group 7 website in 2013. This present
SED is a follow-up of the above-mentioned work.



The document is a teamwork coordinated by Stephanos E. Dritsos, and material has been shared
between the authors. However, the proposal of each chapter was drafted by a leading author, in
the following chapter order: Jon Moseley (Chapter 1), Andreas Lampropoulos (Chapter 2), Efty-
chia Apostolidi (Chapter 3), and Christos Giarlelis (Chapter 4).

This document concerns reinforced concrete buildings and masonry buildings. It attempts to
categorize the types of seismic failures, explain the reasons of each failure, and propose good
practices to avoid such a failure. Suggestions for pre-earthquake strengthening of weak structures
or elements together with post-earthquake retrofitting measures when damage has occurred are
also presented. This document is intended as a comprehensive educational reference textbook
to benefit the engineering society and our society as a whole community. In addition, it is aimed
at all classes of engineers from novice to expert, as well as students, and it could be a unique doc-
ument that may be of considerable benefit to the IABSE community and practicing civil and
structural engineers in general. It may have considerable impact in developing countries where
the infrastructure is still being built, because it addresses, among other things, non-engineered
construction practice. The document’s purpose is to give background information, stimulate
focus on the earthquake problem, extend knowledge concerning earthquakes, and to give ideas
and reassurance to those faced with the task of building a safer future for the public and to save
lives.

Specific thanks are due to Jon Moseley for his participation in this project from the very begin-
ning, for his invaluable insights and comments during the internal review process, and for his
time-consuming dedication when correlating the individual chapters and integrating them into
one document.

Finally, we would like to thank IABSE and specifically IABSE Vice-President Dr. Christian Cre-
mona and Dr. Harshavardhan Subbarao, Chair of the Editorial Board, and its board for providing
full support for publishing this document.

Stephanos E. Dritsos
University of Patras
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Hydraulic Dampers MHD which 
dampens at 0.32 Hz and a stroke
of +/– 400 mm. Including a moni-
toring system for displace  ments, 
forces and accelerations. 
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with a rotational hinge (design 
specification 3 % dynamic friction
and 2,400 mm effetive radi-
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Chapter

1

Introduction

1.1 Some Basics

While there are a few earthquakes that are due to volcanic activity, collapse of underground
caves, or mining activities, most earthquakes are of tectonic origin and take place at or near to
the edges of the world’s tectonic plates. The vast majority of these tectonic earthquakes are
caused by a sudden slippage along a fault, which releases energy and causes seismic waves that
make the ground shake. Figures 1.1 and 1.2 present the maps of the world’s major tectonic plates
and the world’s recorded earthquakes, respectively.1 The coincidence of plate boundaries and
earthquake locations can be clearly seen by comparing these two figures. In fact, recording the
location of earthquakes over time has led to defining the current boundaries between the world’s
tectonic plates. Plate boundaries represent transform, divergent, convergent or zones. That is,
they either grind past each other, slide apart from each other, collide (with one disappearing
beneath the other), or form regions, where the boundaries and interactions between plates are
not clear.2 These interactions cause earthquakes. The following are some examples of movements
at the plate boundaries: transform motion of the San Andreas Fault Zone (≈5 cm/year),2 diver-
gence of the Mid-Atlantic Ridge (≈2.5 cm/year),2 divergence of the East Pacific Rise
(≈15 cm/year),2 and India converging on the Himalayas (≈5 cm/year).3

In line with other past and contemporary visionaries, Alfred Wegener in 1912 proposed the con-
cept of continental drift,4 which provoked disagreement, debate, and finally proof. This resulted in
the development of the scientific theory of plate tectonics in the second half of the twentieth cen-
tury.5 Plate tectonic theory states that the rigid crust of the earth (the lithosphere) is broken up into
“plates”moving on a low-viscous layer (the asthenosphere) with a fluidmechanics behaviour. The
very cause of earthquakes is, thus, the movement of such large plates that compose the outer shell
of the earth’s crust. Heat from the layers below the lithosphere and the difference between the light
density of the lithosphere and the heavy density of the underlying asthenosphere explain such
movements and are viewed as the most important source of energy that drives plate tectonics.
The difference in density also allows the asthenosphere to sink into the deep mantle at subduction
zones (where plates converge). Tectonic plates include continental crust, oceanic crust, or both.

An earthquake is a sudden, transient, and sometimes extremely violent movement of the earth’s
surface. In order for an earthquake to occur, a mechanism is needed to supply the energy and stress

1
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Chapter

2

Reinforced Concrete Building’s
Seismic Failures

2.1 Introduction

Reinforced concrete (RC) is one of the most commonmaterials used to construct buildings world-
wide. In seismic regions, the majority of existing RC buildings have been designed either to old
seismic code provisions that are now understood to be inadequate or without any code provisions.
As such, many of these buildings are highly vulnerable to earthquakes.1–3 In this section, the most
common failure types affecting RC structures in their entireties will be described, followed by
typical failure modes of RC elements.

2.2 Global Vulnerability

2.2.1. Plan and Vertical Irregularities

The response of RC buildings under earthquake loading is highly dependent on the distribution of
the mass and the stiffness in both the horizontal and vertical directions. These irregularities in the
distribution of mass, strength, and stiffness are broadly classified as plan (horizontal) and vertical
irregularities.4

During seismic excitation, horizontal inertia forces are generated in buildings, which are consid-
ered to act through the centre of the mass of the structure. The vertical elements of the structure
resist these actions, which are assumed to act through the centre of rigidity. When the centre of
mass does not coincide with the centre of rigidity, there is eccentricity. During an earthquake, tor-
sion results as the centre of mass rotates around the centre of rigidity, which may lead to severe
damage (Fig. 2.1). Buildings that have an irregular plan shape (such as Π, L, T, and I shapes,
see Section 3.2.1.1 for more details) may also suffer from torsion for the same above reasons
unless precautions have been taken.

In the building shown in Fig. 2.1, shear walls were concentrated mostly at the top and left side
(in plan), leading to a significant deviation of the centre of rigidity from the centre of mass. This

19
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Chapter

3

Masonry Buildings’ Seismic Failures

3.1 Introduction

Masonry structures are probably the most popular and ancient type of buildings all over the
world. Easy access of its constitutive materials, which are basically stones, bricks, and mortar
(which varies from region to region), makes masonry one of the everlasting construction
methods from small residential buildings to the most important ancient and historic monu-
ments. Some of the most significant monuments throughout the world made of masonry are
presented in Fig. 3.1.

Somemasonry buildings have proved to be resistant structures even in seismic prone areas, due to
some specific structural characteristics that have been observed throughout the years and after
many destructive earthquakes. In this chapter, an effort will be made to refer to and describe
the most characteristic deficiencies in unreinforced and reinforced masonry buildings under seis-
mic actions. Design recommendations for new earthquake-resistant structures will follow, and
some retrofitting and strengthening strategies for existing masonry buildings will be proposed.

3.2 Unreinforced Masonry Buildings

Unreinforced masonry buildings usually consist of vertical structural elements (walls),
which support the horizontal structural elements (floors and roofs), forming a box-type
structural system. When unreinforced masonry buildings are carefully constructed, the grav-
itational loads acting on the floors (performing as horizontal flexural elements) are trans-
ferred first to the load-bearing walls (acting as vertical compression elements) and finally
to the foundation. Floors and roofs, which should ideally act as rigid diaphragms, addition-
ally transfer earthquake-induced horizontal inertia actions to the walls, resulting in shearing
and/or bending effects on the walls. Furthermore, distributed inertia forces are induced by
the distributed wall element masses, which may result in the out-of-plane bending of the
walls.1

59
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Chapter

4

Geotechnical Aspects of Structural
Failures

4.1 Introduction

Strong seismic shaking is recognized as the direct cause of structural failures. In many cases,
however, the factor that initiates the structural damage is ground failure or ground displacement.
This chapter deals with the identification of all geotechnical related structural failures. Surface
fault rupture has been a well-acknowledged cause of failures of structures built across or near
the fault, which are increasing in frequency as the man-made environment constantly expands
to new areas. Seismically induced rockfalls, landslides and slope failures have also been associ-
ated with major disasters with an increasing frequency in some cases due to an expanding popu-
lation, which encroach on areas with landslide risk or in other cases as result of the destruction of
the natural environment (vegetation and water routes), which have protected these slopes in the
past. Foundation damage may be a result of failure of shallow foundations or piles. In addition,
although liquefaction and ground settlement are technically part of foundation failures, they are
usually treated as separate, special cases. Retaining wall structures, usually considered as simple
systems, may display a complex behaviour, which can be related to extensive seismic failures.
Finally, not taking into account soil–structure interaction (SSI) may have a detrimental effect
on the dynamic response of structures. Although SSI may never be the direct cause of a structural
failure, it has proven to be, in several cases, the underlying reason for the analysis misconception
that led to the failure.

Most of the contemporary seismic codes have acknowledged the significant role of geotechnical
conditions in the seismic response of structures and attempt to incorporate their influence. This is
usually achieved through the application of an amplification factor in the response spectrum
or/and other parameters that affect its shape depending on the soil class (usually related to the
shear wave velocity of the upper part of the soil stratum). In addition, recommendations are given
regarding the near field conditions, soil liquefaction, etc., but also for the design of foundations
and earth retaining structures. However, in many cases these recommendations are partly
neglected in everyday practice especially in smaller projects in order to reduce the cost. Not
uncommonly, the engineer in charge avoids a thorough geotechnical investigation and bases
the design on parameters typical for the area, but partly inaccurate assumptions for the soil
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